4 research outputs found

    CXCL12-Mediated Guidance of Migrating Embryonic Stem Cell-Derived Neural Progenitors Transplanted into the Hippocampus

    Get PDF
    Stem cell therapies for neurodegenerative disorders require accurate delivery of the transplanted cells to the sites of damage. Numerous studies have established that fluid injections to the hippocampus can induce lesions in the dentate gyrus (DG) that lead to cell death within the upper blade. Using a mouse model of temporal lobe epilepsy, we previously observed that embryonic stem cell-derived neural progenitors (ESNPs) survive and differentiate within the granule cell layer after stereotaxic delivery to the DG, replacing the endogenous cells of the upper blade. To investigate the mechanisms for ESNP migration and repair in the DG, we examined the role of the chemokine CXCL12 in mice subjected to kainic acid-induced seizures. We now show that ESNPs transplanted into the DG show extensive migration through the upper blade, along the septotemporal axis of the hippocampus. Seizures upregulate CXCL12 and infusion of the CXCR4 antagonist AMD3100 by osmotic minipump attenuated ESNP migration. We also demonstrate that seizures promote the differentiation of transplanted ESNPs toward neuronal rather than astrocyte fates. These findings suggest that ESNPs transplanted into the adult rodent hippocampus migrate in response to cytokine-mediated signals

    The first post-Kepler brightness dips of KIC 8462852

    No full text
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in 2015 October, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1%–2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor," which persist on timescales from several days to weeks. Our main results so far are as follows: (i) there are no apparent changes of the stellar spectrum or polarization during the dips and (ii) the multiband photometry of the dips shows differential reddening favoring non-gray extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale Lt1 μm, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
    corecore